BEST: International Journal of Management, Information Technology and Engineering (BEST: IJMITE)

ISSN 2348-0513

Vol. 2, Issue 6, Jun 2014, 13-20

© BEST Journals

G*- COMPACT SPACE

PAULINE MARY HELEN. M¹ & VAKITHABEGAM. R²

¹Associate Professor in Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India ²M.Phil Scholar, Nirmala College for Women, Coimbatore, Tamil Nadu, India

ABSTRACT

In this paper g^* - isolated point, g^* - compact, g^* -locally compact, g^* -sequencially compact, g^* -countably compact are introduced and the relationship between these concepts are studied.

KEYWORDS: G*-Isolated Point, G*-Compact, G*-Locally Compact, G*-Sequencially Compact, G*-Countably Compact

1. INTRODUCTION

Levine [1] introduced the class of g-closed sets in 1970 and M.K.R.S.Veerakumar [5] introduced g*-closed sets in 1991. In this paper g*- compact spaces, g*-locally compact spaces, g*-sequencially compact spaces, g*-countably compact spaces are defined and their properties are investigated.

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X, τ) is called

- 1) generalized closed set (briefly g-closed)[1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 2) generalized star closed set (briefly g*-closed)[5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Definition 2.2[5]: A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called

- 1) g^* -irresolute if $f^{-1}(V)$ is a g^* -closed set of (X,τ) for every g^* -closed set V of (Y,σ) .
- 2) g^* -continuous if $f^{-1}(V)$ is a g^* -closed set of (X,τ) for every closed set V of (Y,σ) .
- 3) strongly g^* -continuous if $f^{-1}(V)$ is a closed set of (X,τ) for every g^* -closed set V of (Y,σ) .
- 4) g^* -resoluteif f(V) is g^* -closed in Y whenever V is g^* -closed in X.

Definition 2.3[3]: Let (X,τ) be a topological space and $x \in X$. Every g^* -open set containing x is said to be a g^* -neighbourhood of x.

Definition 2.4[3]: Let Abe a subset of X. A point $x \in X$ is said to be a g^* -limit point of A if every g^* -neighbourhood of x contains a point of A other than x.

Definition 2.5[3]: Let Abe a subset of a topological space (X,τ) . $g^*cl(A)$ is defined to be the intersection of all g^* -closed sets containing A.

Note: $g^*cl(A)$ need not be g^* -closed, since intersection of g^* -closed sets need not be g^* -closed. But if A is g^* -closed then $g^*cl(A) = A$.

Definition 2.6[3]: The topological space (X,τ) is said to be g^* -multiplicative if arbitrary intersection of g^* -closed sets is g^* -closed. Equivalently arbitrary union of g^* -open sets is g^* -open.

Note: If (X,τ) is g^* -multiplicative then $A = g^* cl(A)$ if and only if A is g^* -closed.

Definition 2.7[2]: A collection C of subsets of X is said to have the finite intersection property if fore very sub collection $\{C_1, C_2, \ldots, C_n\}$ of C then the intersection $C_1 \cap C_2 \cap \ldots \cap C_n$ is not empty.

Definition 2.8[4]: A topological space (X,τ) is said to be g^*T_2 space if for every pair of distinct points x, y in X, there exists disjoint g^* -open sets U and V in X such that $x \in U$ and $y \in V$.

3. G*- COMPACT SPACE

Definition 3.1: A collection $\{U_{\alpha}\}_{{\alpha}\in\Delta}$ of g^* -open sets in X is said to be g^* -open cover of X if $X=\bigcup_{{\alpha}\in\Delta}U_{\alpha}$.

Definition 3.2: A topological space (X,τ) is said to be g*-compact if every g*-open covering of X contains a finite sub collection that also covers X. A subset A of X is said to be g*-compact if every g*-open covering of A contains a finite sub collection that also covers A.

Remark 3.3: A Topological Space (X,τ) Is

- (1) g^* -compactness \Rightarrow compactness
- (2) Any finite space is g*-compact.

Example 3.4: Let (X,τ) be infinite cofinite topological space. Then $G^*O(X) = \{\Phi, X, A/A^c \text{ is finite}\} = G^*O(X)$. Let $\{U_\alpha\}_{\alpha\in\Delta}$ be an arbitrary g^* -open cover for X. Let U_{α_0} be one g^* -open set in the open cover $\{U_\alpha\}_{\alpha\in\Delta}$. Then $X-U_{\alpha_0}$ is finite, say $\{x_1, x_2, x_3, \ldots, x_n\}$. Choose U_{α_i} such that $x_{\alpha_i} \in U_{\alpha_i}$ for $i=1,2,\ldots,n$. Then $X=U_{\alpha_0}\cup U_{\alpha_1}\cup\ldots\cup U_{\alpha_n}$. The space g^* -compact and hence compact

Theorem 3.5: A g*-closed subset of g*-compact space is g*-compact.

Proof: Let A be a g*-closed subset of a g*-compact space (X,τ) and $\{U_{\alpha}\}_{{\alpha}\in\Delta}$ be a g*-open cover for A. Then $\{\{U_{\alpha}\}_{{\alpha}\in\Delta}, (X-A)\}$ is a g*-open cover for X.SinceXis g*-compact, there exists $\alpha_1,\alpha_2,\ldots,\alpha_n\in\Delta$ such that $X=U_{\alpha_1}\cup\ldots\cup U_{\alpha_n}$ which proves A is g*-compact.

Remark 3.6: The converse of the above theorem need not be true as seen in the following example.

Example 3.7: A set which is g^* -compact but not g^* -closed.Let $X=\{a,b,c\},\tau=\{\Phi,\{a\},\{a,b\},X\}$. Then (X,τ) is g^* -compact. The subset $A=\{b\}$ is g^* -compact but not g^* -closed

Theorem 3.8[4]: Let (X,τ) be a g*- multiplicative g*T₂space. Then every g*- compact subset of X is g*- closed.

Proof: Let Y be a g*- compact subset of g* T_2 - space. Let $x_0 \in X - Y$. For each point $y \in Y$. There exists disjoint g*- open sets U_y and V_y containing y and x_0 respectively. Therefore $\{U_y/y \in Y\}$ is a g*-open cover for Y. Now there exists

$$\{y_1,y_2,\dots,y_n\} \in Y \text{ such that } Y \subseteq \bigcup_{i=1}^n U_{y_i} = U \text{ (say)}. \text{ Let } V = \bigcap_{i=1}^n V_{y_i} \text{ . Then } V \text{ is } g^*\text{-open. Since } X \text{ is } g^*\text{-multiplicative,}$$

U is g*-open. Obviously $U \cap V = \varphi$. Therefore V is a g*-neighbourhood of x_0 contained in X-Y. Therefore X-Y is g*-open and hence Y is g *-closed.

Note: The converse of theorem 3.8 is true if (X,τ) is g^* -multiplicative and g^* - T_2 .

G*- Compact Space

Remark 3.9: In theorem 3.8, the condition is necessary. An infinite cofinite topological space is g^* -multiplicative but not g^*T_2 . In this space all subsets are g^* -compact but only finite sets are g^* -closed.

Theorem 3.10: Let Y be a g*-compact subset of a g*-T₂ space X and $x_0 \notin Y$. Then

there exists disjoint g*-open sets U and V of X containing x₀ and Y respectively.

Proof: Theg*-open setsU and V discussed in the proof of theorem 3.8 are disjoint g*-open sets containing Y and x_0 respectively.

Theorem 3.11: Let (X,τ) and (Y,σ) be two topological spaces and $f:(X,\tau)\to (Y,\sigma)$ be a function. Then

- 1. f is g*-irresolute and A is a g*-compact subset of $X \Rightarrow f(A)$ is a g*-compact subset of Y.
- 2. f is one to one, g*-resolute and B is a g*-compact subset of Y $\Longrightarrow f^{-1}(B)$ is a g*-compact subset of X.
- 3. f is g*-resolute, X is g*-compact, Y is g*-multiplicative and $g*T_2 \Longrightarrow f$ is a g*-resolute function.
- 4. f is g^* -resolute and Y is g^* -compact and X is g^* -multiplicative and $g^*T_2 \Longrightarrow f$ is a g^* -irresolute function.

Proof: (1) & (2) Obviously from the definitions. (3) Proof follows from (1) and theorem (3.8). (4) Proof follows from (2) and theorem (3.8).

Definition 3.12[2]: A collection $\boldsymbol{\mathcal{C}}$ of subsets of X is said to have the finite intersection property if for every finite sub collection $\{C_1, C_2, \ldots, C_n\}$ of $\boldsymbol{\mathcal{C}}$ then $C_1 \cap C_2 \cap \ldots \cap C_n \neq \boldsymbol{\Phi}$.

Theorem 3.13: A topological space (X,τ) is g^* -compact if and only if for every collection \mathcal{C} of g^* -closed sets in X having the finite intersection property, the intersection $\bigcap_{c \in C} C$ of all elements of \mathcal{C} is non-empty.

Proof: Let (X,τ) be g^* -compact and \mathcal{C} be a collection of g^* -closed sets with finite intersection property. To prove $\bigcap_{c\in C} C = \Phi$. Suppose $\bigcap_{c\in C} C = \Phi$ then $\bigcap_{c\in C} (X-C) = X$. Therefore $\{X-C \mid c\in C\}$ is a g^* -open cover for X. Then there exists $C_1, C_2, \ldots, C_n \in \mathcal{C}$ such that $\bigcup_{i=1}^n (X-C_i) = X$. Therefore $\bigcap_{i=1}^n C_i = \Phi$ which is a contradiction. Therefore $\bigcap_{c\in C} C \neq \Phi$. Conversely, assume the hypothesis given in the statement. To prove X is g^* -compact. Let $\{U_\alpha\}$ $\alpha \in \Delta$ be a g^* -open cover.

for X.Then
$$\bigcup_{\alpha \in \Delta} U_{\alpha} = X \Rightarrow \bigcap_{\alpha \in \Delta} (X - U_{\alpha}) = \Phi$$
. By the hypothesisthere exists $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that

$$\bigcap_{i=1}^n X - U_{\alpha_i} \equiv \Phi$$
 .Therefore $\bigcup_{i=1}^n U_{\alpha_i}$ =X. Therefore X is

g*-compact.

Corollary 3.14: Let (X,τ) be a g^* -compact space and let $C_1 \supseteq C_2 \supseteq \ldots \supseteq C_n \supseteq C_{n+1} \supseteq \ldots$ be a nested sequence of non-empty g^* -closed sets in X. Then $\bigcap_{n \in z^+} C_n$ is non-empty.

Proof: Obviously $\{C_n\}_{n\in\mathcal{Z}}^+$ has finite intersection property. Therefore by theorem 3.13 $\bigcap_{n\in\mathcal{Z}^+}^{C}$ nis non-empty.

Theorem 3.15: Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be a function then,

- (1) fix g^* -continuous, onto and X is g^* -compact \Rightarrow Y is compact.
- (2) f is continuous, onto and X is g^* -compact $\Rightarrow Y$ is compact.
- (3) f is g^* -irresolute, onto and X is g^* -compact \Rightarrow Y is g^* -compact.
- (4) f is strongly g^* -irresolute and X is g^* -compact $\Rightarrow Y$ is g^* -compact.
- (5) f is g^* -open, bijection and Y is g^* -compact \Rightarrow X is compact.
- (6) f is open, bijection and Y is g^* -compact \Rightarrow X is compact.
- (7) f is g^* -resolute, bijection and Y is g^* -compact $\Longrightarrow X$ is g^* -compact.

Proof of (1): Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be an open cover for Y. Then $\{f^1(U_{\alpha})\}_{\alpha \in \Delta}$ is a g*-open coverfor X.Since X is

$$g^*\text{-compact,there exists }\alpha_1,\alpha_2,\ldots,\alpha_n \text{ such that } X \subseteq \bigcup_{i=1}^n f^{-1}(U_{\alpha_i}). \text{ Therefore } Y = f(X) \subseteq \bigcup_{i=1}^n U_{\alpha_i}.$$

Therefore Y is compact. Proof for (2) to (7) are similar to the above.

4. G*-COUNTABLY COMPACT SPACE

Definition 4.1: A subset A of a topological space (X,τ) is said to be g^* -countably compact if every countable g^* -open covering of A has a finite sub cover.

Example 4.2: An infinite cofinite topological space is g*-countably compact.

Example 4.3: A countably infinite discrete topological space is not g^* -countably compact, because $\{x\}/x \in X\}$ is a countable g^* -open cover, which has no finite subcover.

Remark 4.4: Every g*-compact space is g*-countably compact.

Proof: It is obvious from definition.

Theorem 4.5: In a g*-countably compact topological space every infinite subset has a g*-limit point.

Proof: Let (X,τ) be g^* -countably compact. Suppose that there exists an infinite subsetwhich has no g^* -limit point. Let $B = \{a_n / n \in N\}$ be a countable subset of A. Since B has no g^* -limit point, there exists a g^* -neigh bourhood U_n of a_n such that $B \cap U_n = \{a_n\}$. Now $\{U_n\}$ is a g^* -open cover for B. Since B^c is g^* -open $\{B^c, \{U_n\}_{n \in \mathcal{Z}^+}\}$ is a countable g^* -open cover for X.But it has no finite sub cover which is a contradiction, since X is g^* -countably compact. Therefore every infinite subset of X has a g^* -limit point.

Corollary 4.6: In a g*-compact topological space every infinite subset has a g*-limit point.

Proof follows from theorem (4.5), since every g*-compact space is g*-countably compact.

Theorem 4.7: A g*-closed subset of g*-countably compact space is g*-countably compact.

Proof is similar to theorem (3.5).

G°- Compact Space

Definition 4.8: In a topological space (X,τ) a point $x \in X$ is said to be a g^* -isolated point of A if every g^* -open set containing x contains no point of A other than x.

Theorem 4.9: Let X be a non empty g^*-T_2 space. If X has no g^* - isolated points then X is uncountable.

Proof: Let $x_I \in X$. Choose a point y of X different from x. This is possible since $\{x_I\}$ is not a g^* -isolated point. Since X is g^* -T₂, there exists g^* -open sets U_I and V_I such that $U_I \cap V_I = \Phi$; $x \in U_I$, $y \in V_I$. Therefore V_I is g^* -open and $x_I \notin g^* cl(V_I)$. By repeating the same process with V_I in the place of X and X_I in the place of Y we get a point $x \neq x_I$ and a Y-open set Y such that Y is Y-open and Y-open and Y-open and Y-open and Y-open and Y-open and Y-open set such that Y-open set such that Y-open and Y-open and Y-open set such that Y-ope

Hence we get a nested sequence of g*-closed sets such that $g*cl(V_n) \supseteq g*cl(V_{n-1}) \supseteq \dots$ Since X is $g*compact \cap g*cl(V_n) \neq \phi$. Therefore there exists $x \in \cap g*cl(V_n)$. But $x \neq x_n$ for every n, since $x \notin g*cl(V_n)$ and $x \in g*cl(V_n)$. Define $f: Z \to X$ such that $f(n) = x_n$. Then $x \in X$ has no preimage.

Therefore *f* is not onto and hence X is uncountable.

Note: The converse of Theorem 4.5 is true in a g^* - T_1 space.

Theorem 4.10: In a g^* -T₁ space, if every infinite subset has a g^* -limit point then X is g^* -countably compact.

Proof: Let every infinite subset has a g*-limit point. To prove X is g*-countably compact. If not there exists a countable g*-open cover $\{U_n\}$ such that it has no finite subcover. Since $U_1 \neq X$ there exists $x_1 \notin U_1$; Since $X \neq U_1 \cup U_2$ there exists $x_2 \notin U_1 \cup U_2$. Proceeding like this there exists $x_n \notin U_1 \cup U_2 \cup \ldots \cup U_n$ for all n. $A = \{x_n\}$ is an infinite set. If $x \in X$ then $x \in U_n$ for some n. But $x_n \notin U_n$ for all $k \ge n$. $U_n - \{x_1, x_2, \ldots, x_{n-1}\}$ is a g*-open set (since X is g*-T₁) containing x which does not have a point of A other than x. Therefore x is not a limit point of A which is a contradiction.

Theorem 4.11: A topological space (X,τ) is g^* -countably compact if and only if for every countable collection \mathcal{C} of g^* -closed sets in X having finite intersection property, $\bigcap_{c \in C} C$ of all elements of \mathcal{C} is non-empty.

Proof: Similar to the proof of Theorem (3.13).

Corollary 4.12: X is g^* -countably compact if and only if every nested sequence of g^* -closed non empty sets $C_1 \supset C_2 \supset \dots$ has a non empty intersection.

Proof: Obviously $\{C_n\}_{n\in\mathbb{Z}^+}$ has finite intersection property. Therefore by theorem (4.11) $\bigcap_{n\in\mathbb{Z}^+} C_n$ is non-empty.

5. SEQUENTIALLY G*-COMPACT SPACE

Definition 5.1: A sequence $\{x_n\}$ in X is said to g^* -converge to a point x in X if for every g^* -open set U containing x, there exists a number N such that $x_n \in U \ \forall n \geq N$ and we write $x_n \xrightarrow{g^*} x$.

Definition 5.2: A subset A of a topological space (X,τ) is said to be sequentially g^* -compact,

if every sequence in A contains a subsequence whichg*-converges to some point in A.

Example 5.3: Any finite topological space is sequentially g*-compact.

Example 5.4: An infinite indiscrete topological space is not sequentially g*-compact.

Theorem 5.5: A finite subset A of a topological space (X, τ) is sequentially g^* -compact.

Proof: Let $\{x_n\}$ be an arbitrary sequence in X. Since A is finite, at least one element of the sequence say x_0 must be repeated infinite number of times. So the constant subsequence x_0, x_0, \ldots must g^* -converges to x_0 .

Remark 5.6: Sequentially g^* -compactness implies sequentially compactness. Since open sets are g^* -open. But the inverse implication is not true as seen in the following example.

Example 5.7: Any infinite indiscrete space is sequentially compact but not sequentially g*-compact.

Theorem 5.8: Every sequentially g^* -compact space is g^* -countably compact.

Proof: Let (X,τ) be sequentially g^* -compact. Suppose X is not g^* -countably compact. Then there exists countable g^* -open cover $\{U_n\}_{n\in \mathbb{Z}^+}$ which has no finite subcover. Then $X=\bigcup_{n\in \mathbb{Z}^+}U_n$. Choose $x_1\in U_1, x_2\in U_2-U_1, x_3\in U_3-\bigcup_{i=1,2}U_i$ $x_n\in U_n-\bigcup_{i=1}^{n-1}U_i$. This is possible since $\{U_n\}$ has no finite subcover. Now $\{x_n\}$ is a sequence in X. Let $x\in X$ be arbitrary. Then $x\in U_k$ for some k. By our choice of $\{x_n\}$, $x_i\not\in U_k$ for all i greater than k. Hence there is no subsequence of $\{x_n\}$ which cang*-converge to x. Since x is arbitrary the sequence $\{x_n\}$ has no g^* -convergent subsequence which is a contradiction. Therefore X is g^* -countably compact.

Theorem 5.9: Let $f:(X,\tau)\to (Y,\sigma)$ be a bijection, then

- (1) f is g^* -resolute, bijection and Y is sequentially g^* -compact \Rightarrow X is sequentially g^* -compact.
- (2) f is onto, g^* -irresulote and X is sequentially g^* -compact $\Rightarrow Y$ is sequentially g^* -compact.
- (3) f is onto, continuous and X is sequentially g^* -compact $\Rightarrow Y$ is sequentially compact.
- (4) f is onto, strongly g^* -continuous and X is sequentially g^* -compact $\Rightarrow Y$ is sequentially g^* -compact.

Proof of (1): Let $\{x_n\}$ be a sequence in X. Then $\{f(x_n)\}$ is a sequence in Y.It has a g^* -convergent subsequence $\{f(x_{n_k})\}$ such that $f(x_{n_k}) \xrightarrow{g^*} y_o$ in Y. Then there exists $x_0 \in X$ such that $f(x_0) = y_o$. Let U be a g^* -open set containing x_0 . Then f(U) is a g^* -open set containing y_o . Then there exists N such that $f(x_{n_k}) \in f(U)$ for all $k \geq N$. Therefore $f^{-1}of(x_{n_k}) \in f^{-1}of(U)$. Therefore $x_{n_k} \in U$ for all $k \geq N$. This proves that X is sequentially g^* -compact. Proof for (2) to (5) is similar to the above.

6. G*-LOCALLY COMPACT SPACE

Definition 6.1: A topological space (X,τ) is said to be g^* - locally compactif every point of x is contained in a

G*- Compact Space

g*-neighbourhoodwhose g*-closure is g*-compact.

Remark 6.2: Any g^* -compact space is g^* - locally compact but the converse need not be true as seen in the following example.

Example 6.3: Let (X,τ) be an infinite indiscrete topological space. It is not g^* -compact. But for every $x \in X$, $\{x\}$ is a g^* -neighbourhood and $\overline{\{x\}} = \{x\}$ is g^* -compact. Therefore it is g^* -locally compact.

Theorem 6.4: Let (X, τ) be g^* -multiplicative g^* - T_2 space. Then X is g^* -locally compact if and only if each of its points is a g^* -interior point of some g^* -compact subset of X.

Proof: Let X be g^* -locally compact and $x \in X$. Then x has a g^* -neighbourhood x such that g^* cl(x) is g^* -compact. Conversely, let every point $x \in X$ be a g^* -interior point of some g^* -compact subset of x. Given $x \in X$, there exists g^* -compact subset x such that $x \in g^*$ int(x). So, x is a y^* -neighbourhood of x. By the hypothesis and theorem (3.8), x is y^* -closed. Therefore x is y^* -locally compact.

REFERENCES

- 1. N. Levine, Rend. Cire. Math. Palermo, 19(1970), 89 96.
- 2. James R. Munkres, Topology, Ed-2., PHI Learning Pvt. Ltd. New Delhi, 2010.
- 3. Pauline Mary Helen M, Vakithabegam R, g*-connected space, International Journal of computer application (communicated).
- 4. Pauline Mary Helen M, Vakithabegam R, Separation axioms via g*-open sets in topological spaces,
- 5. International Journal of Recent Scientific Research (communicated).
- 6. M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math), 21(2000), 1-19.

